
An Introduction to CUDA

James Gain
jgain@cs.uct.ac.za

29 April – 3 May 2013

Motivation: Why GPU?

!   Kepler Series GPUs vs. Quad-core Sandy Bridge CPUs
!   Kepler delivers equivalent performance at:

•  1/18th the power consumption
•  1/9th the cost

!   So
!   Awesome performance per Watt
!   Awesome performance per $

!   Price/Performance/Power:
!   NVIDIA GeForce GTX 680 3,090 GFLOPS at 195 W for $460
!   3,090 GFLOPS / 195 W ≈ 15.8 GFLOPS/W
!   3,090 GFLOPS / $460 ≈ 6.7 GFLOPS/$

!   “The Soul of a Supercomputer in the Body of a GPU”
Which costs more: buying a Playstation or running it
continuously for a year?

Performance Graph

Is a speedup of 1400x for a GPU
implementation plausible?

Kepler

HD7970

Xeon-Phi

The Effect of Memory Bandwidth

!  Theoretical Peak FLOPS
!  An unrealistic measure obtained by multiplying the ALU

throughput by number of cores
!  A good measure would also account for I/O performance,

cache coherence, memory hierarchy, integer ops

!  GPUs win again on memory transfer
!  On average 7X higher internal memory bandwidth
!   177.4 GB/s (GTX4xx,5xx) vs 25.6 GB/s (Intel Core i7)
!  However CPU - GPU transfer much slower (~8 GB/s)

Case Study: Molecular Docking

!   1400-fold speed-ups are possible for the
right problem and with sufficient
development effort

!   Coarse-grained replica exchange Monte
Carlo protein docking
!   A statistical sampling approach to aligning

molecules

!   Viral capsid construction:
!   680,000 residues, 100 million iterations
!   3000 years on a single CPU
!   < 1 year on a cluster of GPUs

x 240

A Difference in Design
Philosophies

Control

Cache

DRAM

ALU

ALU

ALU

ALU

CPU GPU

DRAM

Design Implications

!  CPU:
!  Optimized for sequential code performance
!  Lower memory bandwidths (< 50 GB/s)
!  Large cache and control

!  GPU:
!  Optimized for parallel numeric computing
!  Higher memory bandwidths (> 150 GB/s)
!  Small cache and control

!   Ideal is a combination of CPU and GPU, as
provided by CUDA

Motivation: Why CUDA?

!   What is it?
!   Compute Unified Data Architecture (CUDA)
!   Offers control over both CPU and GPU from within a single

program
!   Written in C with a small set of NVIDIA extensions

!   Better than the GLSL/HLSL/Cg alternative:
!   Forcing a square peg into a round hole (forcing a Computer

Graphics program to be general purpose)

!   More features:
!   Shared memory, scattered reads, fully supported integer and

bitwise ops, double precision if needed

Motivation: Why not GPU?

!  GPU’s are not a cure-all
!  Not suited to all algorithms

!  Work needs to be divisible into small largely-
independent fragments

!  Does not cope well with recursive highly-branching
tightly-dependent algorithms

!  Difficult to program
!  Relatively easy to get moderate speedups (2-5X)
!  Better performance requires understanding of the

architecture and careful tuning

Feeding the Beast

!  Need thousands of threads to:
!  Saturate processors
!  Hide data transfer latency
!  Handle other forms of

synchronisation
!  Supported by low thread

scheduling overhead
!  But not all problems are

amenable to such a
decomposition

+

Memory Bandwidth

Effective memory use is absolutely crucial to GPU acceleration

CPU to GPU: ~6 GB/s

Global Memory: 177 GB/s

Shared Memory: ~1,600 GB/s

Register Memory: ~8,000 GB/s

Computation per SM/SMX: ~24,000 GB/s

Motivation: Why not CUDA?

!  Proprietary product
!  Only supported on NVIDIA GPUs

!  Stripped down version of C:
!  No recursion (< cc2.0), no function pointers

!  Branching may damage performance
!  Double precision deviates in small ways

from IEEE 754 standard

CUDA Compared

Platform ✗ ✔
Shader Languages
(GLSL, Compute)

•  Contorted code (for a
non-graphics fit)
•  More passes required
•  Restricted access to
features
•  Harder to learn

•  Supported on more
GPUs

OpenCL •  Still underdeveloped
•  Somewhat verbose

•  Cross-platform
standard
•  Similar in design to
CUDA

ATI Stream •  Late to the party
•  Also proprietary
•  DEAD?

Implications of Computer Graphics
Legacy

!  Games Industry:
!  Constant drive for performance

improvement
!  Commoditisation – high demand

leads to high volumes, lower prices
!  Massively multi-threaded:

!  Millions of incoming polygons and
outgoing pixels, each largely
independent

!  Best supported by millions of
lightweight threads

Computation Implications

!  Coherence:
!  Nearby pixels / vertices have similar access patterns

and computation
!  Consequently, GPU’s expect memory access and

branch coherence
!  Single-precision floating point:

!  Geometric operations in CG require floating point but
don’t need the accuracy of double precision

!   Consequently, integers and doubles weren’t well
supported until recently

Memory Implications

!  Memory Bandwidth:
!   Must transfer millions of elements from vertex

buffers and to the framebuffer or the frame
rate stalls

!   Consequently, memory transfers have high
bandwidth

!  Textures:
!   Images that are wrapped onto geometry to

cheaply provide additional realism
!   Consequently, GPU’s support large on-chip

memories with high bandwidth coherent
access

CUDA Programming Model

!   Data parallel, compute intensive functions should be off-
loaded to the device

!   Functions that are executed many times, but
independently on different data, are prime candidates
!   i.e. body of for-loops

!   CUDA API:
!   Minimal C extensions
!   A host (CPU) component to control and access GPU(s)
!   A device component
!   CUDA source files must be compiled with the nvcc compiler

Summary

!   With current barriers to higher clock speeds, Parallel
Computing is recognised as the only viable way to
significantly accelerate applications

!   Many-core GPU architectures are a strong alternative to
multi-core (dual-core, quad-core, etc) CPU architectures

!   Programming in CUDA can provide considerable
speedup for numerically intensive applications
!   But more significant speedups often require extensive tuning and

algorithm restructuring
Take-home Messages

[1] Not all problems are suited to a GPU solution
[2] Refactoring and careful tuning required for best performance

Slide References

!   J. Seland. Cuda Programming, Jan 2008. http://heim.ifi.uio.no/
˜knutm/geilo2008/seland.pdf

!   David Kirk and Wen-mei Hwu, 2007-2009. ECE 498AL Spring
2010, University of Illinois, Urbana-Champaign.

!   David Kirk and Wen-mei Hwu, Programming Massively
Parallel Processors: a Hands-on Approach, Morgan
Kaufmann, 2010.

